株式会社QuantumCore

Reservoir Computing
の力をかんたんに

「少量データ」で「リアルタイム学習」を
「高精度」に実現するQoreシリーズ

NEWS

【受賞のご報告】MITANI Business Contestにて北陸銀行賞、ダイワボウ情報システム賞をダブル受賞いたしました

 

12月11日〜13日の期間で開催された「MITANI Business Contest」にて、弊社のレザバーコンピューティング技術を活用した発言者毎の文字起こしサービス『Sloos(スルース)』が北陸銀行賞、ダイワボウ情報システム賞の両賞を受賞したことを報告いたします。

 

MITANI Business Contestコンテストとは、北陸地域の活性化と先進的ソリューションの発掘をするため、ビジネスアイデアの事業化に向けたサポートや既存ビジネスへの活用を模索しアライアンス・ビジネスマッチングの実現を図り、北陸経済の活性化に貢献することを目的に開催されているコンテストです。

 

コンテスト内容およびサービスの詳細につきましては下記をご覧ください。

 

 

【PRtimes】

 

MITANI Business Contest概要
https://www.mitani.co.jp/mbc/

 

Sloos 北陸銀行賞、ダイワボウ情報システム賞を三谷ビジネスコンテストで受賞
https://prtimes.jp/main/html/rd/p/000000014.000039630.html

 

Sloosサービスページ
https://sloos.qcore.co.jp/

【メディア掲載】『AERA 11月30日号』に掲載されました

  

  

2020年11月30日号の『AERA』および『AERA dot.』にて、
弊社の議事録サービス『Sloos』の取り組みについて取り上げていただきました。

   

『Sloos』の低価格・無制限で使用可能・使用後のデータ削除など、それぞれ機能の利点について取り上げていただいております。

 

是非ご覧ください。

 

 

 

≪ AERA dot. 2020年11月28日 ≫

議事録はAIにお任せ? 方言に対応、“同時通訳”も…進化した自動文字起こしサービス

https://dot.asahi.com/aera/2020112600043.html?page=1

  

  

≪ AERA   2020年11月30日号 P.58 ≫

議事録はAIに任せた 最新サービス5種を記者が試してみた

【メディア掲載】『日経産業新聞』に掲載されました

10月30日付で発刊された日経産業新聞の16面に、弊社の議事録作成サービス「Sloos」について取り上げていただきました。

 

話者ごとに会話の文字起こしができ、学習量が非常に少なくて済む当サービスは、5月に無償にて試験提供を始め、10月23日より正式版をリリースさせていただきました。

 

サービスのお問い合わせについてはこちらよりアクセスください。

 

≪ 日経産業新聞 2020年10月30日掲載 ≫

話者ごとに議事録作成 クアンタムコア

【サービス提供開始】1時間約1円で議事録再生 事前登録無しの話者認識や発話分析が可能な「Sloos正式版」を提供開始

音声認識により文字起こしを行う議事録システムは既に市場で利用されていますが、発言者毎の文字起こしは様々な技術的課題があるため、実運用に見合うソリューションがありません。

また新型コロナウイルス(COVID-19)で在宅勤務が普及した事で以前より会議が増加し、議事録のニーズが高まっています。

 

当社はこの課題を解決するために、対面やオンライン会議システム(Microsoft TeamsやZoom等)で会話をしながら発言者毎に文字起こしができる「Sloos(スルース)」のβ版を提供していましたが、機能やデザインを大幅に刷新した正式版の提供を開始します。

サービスサイト:https://sloos.qcore.co.jp/
お問い合わせ:https://forms.gle/8G4WahXmGmzDZwaAA

 

 

 

【正式版の機能】
正式版は機能の強化や追加、UI・UXが大幅な改良されており、主な代表例は以下の通りです。
・Microsoft社の音声認識
・話者の事後登録
・リアルタイムテキスト編集
・各種ブラウザ・スマートフォン対応
・50種類以上の多言語対応
など

 

【料金プラン】
初回登録から最大30日間は無償トライアルとなり、翌月以降はご利用時間上限無しで月額800円のパーソナルプランと、月額2000円のビジネスプランに応じた料金となります。
ご希望に応じて、文字起こし精度の向上が見込める音声認識オプションを120円/時間で別途ご購入いただけます。
*正式版リリース記念キャンペーンとして、10月中に無償トライアルを開始された方は翌月11月末日まで無償トライアル期間が延長となります。

 

 

 

リリースの詳細につきましては、下記よりご覧ください

 

【PR TIMES】Sloos正式版 1時間約1円で議事録作成 事前登録無しの話者認識や発話分析も提供

https://prtimes.jp/main/html/rd/p/000000017.000039630.html

【メディア掲載】『KEIEISHA TERRACE』に掲載されました

 

経営やキャリアについて発信するメディア「KEIEISHA TERRACE」(運営:株式会社経営者JP)において、
株式会社経営者JPの代表取締役社長・CEO井上様と当社代表取締役CEO秋吉との対談内容を掲載いただきました。

 

 

この度の取材では、秋吉の生い立ちに始まり、
レザバーコンピューティングの特徴や弊社の最近の取り組みなどについて取り上げていただきました。
世の中における「偏りの問題」について解決していきたいという価値観や、
これからのニューノーマルについての考え方についても感じていただければ幸いです。

 

是非、ご覧ください。

 

 

≪ KEIEISHA TERRACE イマ、ココ、注目社長! ≫

【2020-07-15 第100回掲載】

少量のデータでリアルタイムに学習するAIが、分散型社会を実現!様々な業界の一極集中問題を解決したい。

https://keieishaterrace.jp/article/detail/15371/

スタートアッププログラム「Microsoft for Startups」に採択されました

この度、弊社はマイクロソフト コーポレーション(本社: 米国ワシントン州)のスタートアップ支援プログラム『Microsoft for Startups』に採択されました。

 

 

Microsoft for Startupsとは、独自の革新的なテクニカル ソリューションを持つ BtoB スタートアップ向けの支援プログラムで、
新しい顧客やチャネルパートナーとスタートアップを結び付け、グローバルなエコシステムを作り上げることを目的としています。

 

 

今回の採択により、当社はマイクロソフトと協業し、
発言者毎の文字起こしができるサービス「Sloos」の開発を加速するとともに、事業推進を強化してまいります。

 

今回の採択により、弊社は下記の取り組みについて積極的に推進いたします。

  • Azureの音声認識エンジンの活用
  • ・TeamsとのAPI連携によるリアルタイム話者認識
  • OneDriveやSharePointへ書き起こし結果の保存
  • ・Outlookの連絡先へ発言者毎に内容の記録やオリジナル辞書の作成
  • ・マイクロソフト社の製品を利用する企業様へのご利用提案

  

 

採択内容およびサービスの詳細につきましては下記をご覧ください。

 

【PRtimes】
Sloosを提供するQuantumCoreが「Microsoft for Startups」に採択
https://prtimes.jp/main/html/rd/p/000000014.000039630.html 

 

【サービス提供開始】白物家電やヘルスケア製品・産業用機器などあらゆる組込に対応可能なCortex-Mシリーズ向けエッジ時系列処理AIソリューション「EdgeQore Lite」の提供を開始

 

再帰型ニューラルネットワーク(Recurrent Neural Network:以下「RNN」)の一種であるレザバーコンピューティング(Reservoir Computing)を活用し、ディープラーニングの性能を超える多変量時系列処理ソリューションの開発に成功した株式会社QuantumCore(クアンタムコア、本社:東京都品川区、代表取締役:秋吉信吾、以下「当社」)が、同社が展開する「Qoreシリーズ」にCortex社のマイコンMシリーズ向けのラインナップを追加しました。

 


当社独自の技術により、高い精度を維持したまま、わずか640kb以下のマイコンでの動作を実現、学習から推論までのフル機能を「Cortex-Mシリーズ」内で全て完結させることで、
業界で初めて組込マイコンを使ったエッジ上での完全なRNN処理を実現しました。

 

※ 更に改良の結果最大メモリ消費量は214kb(7/10追記)

 

 

詳細につきましては、下記をご覧ください

 

【PR TIMES】
白物家電やヘルスケア製品・産業用機器などあらゆる組込に対応可能なCortex-Mシリーズ向けエッジ時系列処理AIソリューション「EdgeQore Lite」の提供を開始

https://prtimes.jp/main/html/rd/p/000000013.000039630.html

 

本プレスリリースに関するお問い合わせは、以下のメールアドレスへお問い合わせください。
info@qcore.co.jp

【プロトタイプ開発のご報告】エッジ処理型の議事録システムのプロトタイプ開発を、BeSTA FinTech Lab(NTTデータ様運営)での議論を踏まえて実施

 

株式会社QuantumCore(クアンタムコア、本社:東京都品川区、代表取締役:秋吉信吾、以下「当社」)は、
レザバーコンピューティングを基にした話者認識モジュール「VDQore」を活用し、
次世代議事録システムのプロトタイプ開発を行いました。

 

当社は、2019年12月末よりNTTデータ様が運営するBeSTA FinTech Lab®にコラボレーターとして参画しております。
ラボでの協議を重ねる中で、金融機関様でニーズのある議事録システムでの話者認識活用を試み、
プロトタイプの開発を行いました。

  

  

リリースの詳細につきましては、下記よりご覧ください

【PR TIMES】
エッジ処理型の議事録システムのプロトタイプ開発をBeSTA FinTech Lab(NTTデータ様運営)での議論を踏まえて実施

https://prtimes.jp/main/html/rd/p/000000012.000039630.html

 

また、本プレスリリースに関するお問い合わせは、以下のメールアドレスへお問い合わせください。
info@qcore.co.jp

【新サービス】ポストコロナ社会を見据えZoom等と併用できる議事録サービス「Sloos」のβ版無償提供開始

音声認識により文字起こしを行う議事録システムは既に市場で利用されていますが、
発言者毎の文字起こしは様々な課題があるため、
実運用に見合うソリューションがありません。

 

当社はこの課題を解決するために、
VDQoreを活用し、発言者毎に文字起こしができる「Sloos(スルース)」の機能限定版の提供を開始いたしましたので、ご報告いたします。

ウェブ会議システム(Zoom, Teams, Google Meets, Skype等)で会話をしながらご利用いただけます。

Slooshttps://sloos.qcore.co.jp/

 

 

リリースの詳細につきましては、下記よりご覧ください

【PR TIMES】ポストコロナ社会を見据えZoom等と併用できる議事録サービス「Sloos」のβ版無償提供開始

https://prtimes.jp/main/html/rd/p/000000011.000039630.html

 

 

本サービスへのお問い合わせは、以下のフォームよりお願いいたします。

https://forms.gle/GBDxnE3rgUyeyhnu8

【メディア掲載】『週刊ポスト』に掲載されました

  

  

3月23日付発売(2020年4月3日号)の週刊ポストにて、
弊社のリモート飲み会の取り組みについて取り上げていただきました。

   

コロナウイルスへの対策として現在、在宅勤務など出社しない働き方が推奨されていますが、
その特集の一環で、先日オンライン飲み会を実施した弊社を取り上げていただきました。

  

  

≪ 週刊ポスト 2020年4月3日号 P.50 ≫

“会合NG”でサラリーマンたちはどこで「飲み会」をしているのか?

https://www.news-postseven.com/archives/20200323_1549698.html

PRODUCT

業界初Reservoir
Computingを活用した、
新たな次世代多変量時系列処理(RNN)ソリューション

高い精度と圧倒的な速さを
Qoreシリーズで手軽に実現
そのままエッジコンピューティング
までカバー

  • 簡単かつ高精度
    簡単かつ高精度 Qoreシリーズでは少量データを入力するだけで簡単に時系列処理を行うことが出来ます。
    例えば、僅かな学習データを用いて、9名の音声から話者を分類するタスクにおいて、チューニング無しで99.2%の精度を実現。従来のLSTMによる処理に比べ、高い精度を実現
    深層学習(LSTM)との比較簡単かつ高精度
  • 安価
    安価 高価なGPUなどは不要。
    従量課金制APIなどを提供、 またマイコンへの移行をサポート
  • とにかく速い
    とにかく速い 新鋭のReservoir Computingの活用によりリアルタイム学習が可能。深層学習とは違う独自の方法でRNNを実現
    深層学習(LSTM)との学習速度比較とにかく速い

当社では、今注目されている リザバーコンピューティング技術を活用し、
「少量の学習データ」でも「リアルタイム・高精度」な推論を実現しています。

詳しくは 「リザバーコンピューティングとは?」 のページをご覧ください。

Qore Series

Qoreシリーズ

リザバーコンピューティングによる
多変量時系列データ解析ソリューション群。
エッジやクラウドでの高速動作に対応し、
SDK・ツールを幅広くご用意しています。

Qore Cloud

Qore Cloud

リザバーコンピューティングを
ノーコードで扱えるクラウド型開発環境。
データアップロードや自動チューニングで、
短期間のPoCをスムーズに進められます。

VADQore

VADQore

音や振動などの時系列データを解析し、
エッジ環境での異常検知を可能にするソリューション。
リアルタイム学習により、高精度で
故障兆候を察知します。

Sloos

AI自動議事録サービス「Sloos」

音声認識・話者分離技術で、
通話や会議を自動テキスト化し要約まで行う
議事録サービスです。
作業コストを大幅に削減します。

 

詳しくは製品一覧をご覧ください。

     

上記のソリューションに関心がございましたら、
ぜひお気軽にお問い合わせください。

お問い合わせ

FEATURE

プラットフォームを選ばない 超高速・超高精度な時系列処理技術

複雑系力学分野で研究されてきたReservoir Computingは、 複雑な時系列処理などの深層学習と同じタスクを 量子コンピュータなど、特殊なハードウェアをもちいることなく、 約1/100オーダーのわずかな学習データで、約100倍近く高速 に解くことができます。

プラットフォームを選ばないプラットフォームを選ばない

少量学習データ、超高速学習によるハイペースなPoC

従来の大量データ収集のタイムロスとと、 パラメータチューニング後の 学習待ちのタイムロスがないため、 ハイペースなPoCを実現

少量学習データ、超高速学習によるハイペースなPoC少量学習データ、超高速学習によるハイペースなPoC

USE CASE

従来不可能だった
個人データの活用

従来の 課題 プライバシーなどの観点からクラウドにアップロードすることは難しく また、個人から取れるデータは少なすぎて高精度なモデルの作成は不可能だった。

  • 少量学習データ、超高速学習によるハイペースなPoC

    心電図で疾患判定が、
    93%の精度で可能

    ※公開データによる不整脈判定テスト

  • 少量学習データ、超高速学習によるハイペースなPoC

    音声での話者特定が、
    99%の精度で可能

    ※9人分の公開データによるテスト

  • 少量学習データ、超高速学習によるハイペースなPoC

    振動での姿勢特定を、
    98%の精度で可能

    ※弊社取組による24値分類テスト

環境に制約のある
工業分野での活用

従来の 課題 工業現場は必ずしもインターネットが活用できるわけではない また、異常値などのデータは少なすぎて高精度なモデルの作成は不可能だった。

  • 異常検知

    少量学習データ、超高速学習によるハイペースなPoC

    音での作業状態特定が、
    94%の精度で可能

    ※弊社取組によるテスト

  • 作業工程の可視化

    少量学習データ、超高速学習によるハイペースなPoC

    センサーでの作業特定が、
    73%の精度で可能

    ※弊社取組によるテスト

  • ロボットアーム制御

    少量学習データ、超高速学習によるハイペースなPoC

    センサーでの力学推定を、
    高精度に予測可能(回帰)

    ※弊社取組によるテスト

複雑すぎる
時系列問題での活用

従来の 課題 自然現象など複雑な問題に対して、限定的なセンサーや入力ソースで判別は困難

  • ニオイ検知

    少量学習データ、超高速学習によるハイペースなPoC

    排泄タイミングの特定が、
    80%の精度で可能

    ※弊社取組によるテスト

  • モーション推定

    少量学習データ、超高速学習によるハイペースなPoC

    骨格の動きで動作推定を、
    91%の精度で可能

    ※弊社取組によるテスト

  • 住宅価格の予測

    少量学習データ、超高速学習によるハイペースなPoC

    住宅価格の予想を、
    高精度に予測可能(回帰)

    ※弊社取組によるテスト

TEAM

  • TEAM

    代表取締役 CEO

    秋吉 信吾

    大学院で自然言語処理の研究後、エキサイト株式会社にて自然言語処理を活用した新規サービスの開発、検索サービス等を担当。2012年深層学習を独学しMistletoe株式会社にて音声/画像認識、対話エージェント等のR&Dに従事。株式会社デジタルガレージでAI関連の新規事業に携わった後、2018年当社設立。R&Dの直接統括を通じた経営戦略への橋渡しと全PoCプロジェクトを横串で監修。

  • TEAM

    取締役 CTO

    長島 壮洋

    東京大学大学院理学系研究科物理学専攻を修了後、ヤフー株式会社にてヤフオクのシステム開発に従事。株式会社カカクコムに入社し、食べログの開発責任者として立ち上げから参画。国内初の大規模システムへのRuby on Rails導入等行い、国内最大のグルメサイトに成長させる。食べログの米国展開などを担当した後、当社の創業メンバーとして参画し、事業創出、技術開発を推進。

  • TEAM

    R&Dリード・SDK開発

    児矢野 晋太

    奈良先端科学技術大学院大学修士課程修了。機械学習・深層学習を応用した自然言語処理や時系列解析の研究後、株式会社ユーザローカル入社。音声認識・画像認識・自然言語処理を活用した新規サービスの研究開発を担当。2019年に当社入社。現在コアテクノロジやフレームワークの開発、各種PoCのR&Dをリード。

  • TEAM

    エッジAI開発リード

    大和田 朋也

    東京大学大学院物理工学専攻修了。計算物質科学を研究後、オン・セミコンダクターに入社。モータ制御IC用組み込みソフトウェア・制御アルゴリズム開発などに従事後、株式会社ニコンに入社。ロボット向けアクチュエーターモジュールの制御性能の評価・調整や制御方式の検討を実施。当社ではマイコン向けのコア技術の実装を担当。

  • TEAM

    エッジAI開発

    姫野 秀徳

    東京大学大学院修了。日置電機にて、国内外の工場現場向けの電気計測器の開発、生産、販売・サービスなどに従事、中国の駐在なども経て、その後独立し地域の企業や組織のデジタル化をさまざまな方向から推進する事業を行う。当社ではエッジ向けの多方面の設計および実装を担当。

  • TEAM

    リサーチアドバイザ

    池上 高志 (教授)

    東京大学大学院情報学環 教授。人工生命研究の世界的な第一人者。専門は、複雑系・人工生命研究。人工生命(ALIFE)に新たな境地を切り拓き、研究を世界的に牽引。メディアアーティストとしても知られ、Ars Electronicaやメディア芸術祭で受賞歴がある。

  • TEAM

    リサーチアドバイザ

    香取 勇一 (教授)

    公立はこだて未来大学 教授、東京大学生産技術研究所 リサーチフェロー。神経システムの数理モデルが専門。脳・神経ネットワークなど生体システムを取り扱うための数理理論の研究を中心に、生理学・工学への応用研究に取り組んでいる。最近では国際会議 IJCNN2019で最優秀論文賞を受賞するなど、ニューラルネットワーク分野で高い評価を得ている。

  • TEAM

    社外取締役

    足立 健太

    製造業・建設業・物流業を支える技術・サービスへの投資・支援に特化したシードVCであるIDATEN Venturesの創業者兼代表パートナー。100m走の現役選手でもある。理学修士。

  • TEAM

    社外取締役

    北澤 知丈

    東京工業大学大学院社会理工学研究科を修了後、株式会社ジャフコに入社。シード・アーリステージを中心に複数社の投資・支援をを行う。2018年にパートナー就任。

  • TEAM

    顧問弁護士

    熊谷 文麿

    東京大学法学部を卒業後、公共系シンクタンク、バークレイズ証券株式会社を経て佐藤総合法律事務所に入所。GMOクリック証券株式会社社外監査役、GMOアドパートナーズ株式会社社外取締役兼監査等委員を兼務。ロボティクス、AI等のスタートアップ、金融機関、東証一部上場企業を含む多様な法人について、幅広い企業法務を行っている。

COMPANY

株式会社QuantumCore
     
社名 株式会社QuantumCore
本社 〒141-0031 東京都品川区西五反田2丁目14-13
代表者 代表取締役 秋吉 信吾
設立 2018年4月24日
資本金 197,500,000円(資本余剰金含む)
業務内容Reservoir Computingを活用した
次世代時系列処理基盤技術の開発・提供と導入支援。

RECRUIT

募集職種 : webエンジニア

仕事内容 弊社の機械学習ソフトウェアのAPI開発(アクセス制御、アカウント制御等バックエンド開発)
採用希望人数 1名
希望年齢 20代後半から30代前半
前職での経験(開発歴、使用言語etc..)
  • LAMP環境でのwebアプリケーション(バックエンド)開発経験3年以上
  • クラウド(AWS)環境のwebサービス運用経験
  • Git, Dockerの利用経験
  • Python, Golangの開発経験

募集職種 : 組み込み系エンジニア

仕事内容 弊社の機械学習ソフトウェアをマイコン等に組み込んで性能評価等を実施
採用希望人数 1名
希望年齢 20代後半から30代前半
前職での経験(開発歴、使用言語etc..)
  • マイコン制御など組み込み系開発経験
  • 各種マイコンのハードウェア知識
  • C/C++での開発経験(高速化処理などチューニングができると尚良

募集職種 : 機械学習エンジニア

仕事内容 弊社の機械学習ソフトウェアを利用してクライアントとの実証実験のサポート(性能評価等)
採用希望人数 2名
希望年齢 20代後半から30代前半
前職での経験(開発歴、使用言語etc..)
  • データの前処理も含めた大量データの分析経験
  • 時系列データの分析経験
  • 機械学習の研究開発経験(国際学会に論文採択経験があれば尚良)
  • Pythonを用いたデータ分析経験

募集職種 : ビジネス開発

仕事内容
  • 弊社クライアントニーズに基づくPoC案件の立案および推進
  • 自社プロダクト「Qoreシリーズ」のPDCA
  • 新規事業の立案
  • 開発部門や各役員との折衝
採用希望人数 1名
希望年齢 20代後半から30代前半
前職での経験 いずれかのインダストリへの深掘りを通じたプロジェクト立案の経験
  • データ分析の経験
  • プロジェクトマネージメントの経験
  • マネジメント層へのプレゼンテーション経験